Ph.D. Preliminary Examination in Numerical Analysis Department of Mathematics New Mexico Institute of Mining and Technology September 3, 2021

- 1. This exam is four hours long.
- 2. Work out all six problems.
- 3. Start the solution of each problem on a new page.
- 4. Number all of your pages.
- 5. Sign your name on the following line and put the total number of pages.
- 6. Use this sheet as a coversheet for your papers.

NAME:			
No. of pages:			

Problem 1.

a) Develop the Taylor's method of order 3 for the following initial value problem:

$$x' = x^2 + t,$$
 $x(t_0) = x_0.$

b) Given X_i , the numerical solution at $t = t_i$, show how to compute the solution X_{i+1} at $t_{i+1} = t_i + h$.

Problem 2.

Suppose that f is a smooth function of a single variable. Using values f(x), f(x+h), and f(x+3h) and the Taylor series formula, derive the best finite difference approximation for f''(x), and determine the order of accuracy of the approximation.

Problem 3.

Determine the degree of exactness of the following quadrature formula:

$$\int_{-1}^{1} f(x)dx \approx Q(f) \equiv \frac{7}{15}f(-1) + \frac{16}{15}f(0) + \frac{7}{15}f(1) + \frac{1}{15}f'(-1) - \frac{1}{15}f'(1).$$

In fact, the quadrature formula can be obtained by integrating the Hermite interpolant H(x) of function f(x) at points $x_0 = -1$, $x_1 = 0$, and $x_2 = 1$; that is,

$$Q(f) = \int_{-1}^{1} H(x) \ dx.$$

Using the following error formula of the corresponding Hermite interpolant

$$f(x) = H(x) + \frac{\omega(x)}{6!} f^{(6)}(\xi(x)),$$

where

$$\omega(x) = x^2(x^2 - 1)^2,$$

and the weighted mean value theorem for integrals:

$$\int_a^b f(x)g(x)dx = f(\xi)\int_a^b g(x)dx, \ \xi \in (a,b), \ \mathrm{sign}(g) = \mathrm{const.},$$

obtain the error formula of the quadrature

$$\int_{-1}^{1} f(x)df = \int_{-1}^{1} H(x)dx + \frac{f^{(6)}(\bar{\xi})}{4725}, \ \bar{\xi} \in (0,1).$$

Problem 4. Describe the Newton method and the Secant method for solving the scalar equation f(x) = 0 for $x \in [a, b]$. Discuss advantages and disadvantages of the methods.

Problem 5. Consider an m by n real matrix A, and let B be the matrix of the same size with entries $b_{i,j} = |a_{i,j}|$. Let $\|\cdot\|_2$ be the matrix 2-norm. Show that

$$||A||_2 \le ||B||_2. \tag{1}$$

Hint: prove the bound $||Ax||_2 \le ||Bx||_2$.

Problem 6. Let

$$M = \left(\begin{array}{cc} A & B \\ B^t & C \end{array}\right)$$

be a positive definite matrix with square diagonal blocks. The matrix

$$N = C - B^t A^{-1} B$$

is known as the Schur complement of block A in M. Prove that the Schur complement N is positive definite.

Hint: Consider $x^t M x$, and let vector

$$x = \left(\begin{array}{c} x_1 \\ x_2 \end{array}\right)$$

be partitioned in accordance with the partitioning of matrix M. For any vector x_2 , let

$$x_1 = Dx_2$$

for some matrix D. Find a scalar c such that, for $D = cA^{-1}B$, it follows that

$$x^t M x = x_2^t N x_2.$$